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Abstract 

I n  this paper we present a n  approach, to image seg- 
mentation in which user selected sets of examples and 
counter-examples supply information about the specific 
segmentation problem. Image segmentation is  guided 
by a genetic algorithm which learns the appropriate 
subset and spatial combination of a collection of dis- 
criminating functions,  associated with image features. 
The genetic algorithm encodes discriminating functions 
into a functional template representation, which can be 
applied to  the input image t o  produce a candidate seg- 
mentation. The quality of each segmentation is  eval- 
uated within the genetic algorithm, b y  a comparison 
of two physics-based techniques for region growing and 
edge detection. Experimental results o n  real SAR im- 
agery demonstrate that evolved segmentations are con- 
sistently better than segmentations derived f rom the 
Bayesian best single feature. 

1 Introduction 

Segmentation is a low-level process that is a first 
step to  many computer vision tasks. The problem in- 
volves partitioning the image into several regions which 
are homogeneous within themselves and distinct from 
each other, according to some set of criteria. There 
exist a variety of approaches to  image segmentation, 
including edge detection, region splitting, region merg- 
ing and clustering. Each of these approaches suffers 
from sensitivity to parameters for thresholding, and/or 
termination conditions. Still other approaches com- 
bine a few of these methods in an attempt to gain 
the strength of more than one technique and overcome 
some of the weaknesses of each. However, whichever 
of these weaknesses causes the algorithm to fail, the 
underlying cause is the inability to  specify how homo- 
geneous a region should be and how distinct bordering 
regions should be in an application dependent man- 

ner. For the approach presented in this paper, appli- 
cation dependency is overcome by allowing the user 
to interactively train the segmentation tool for his/her 
application. The contributions of this research include: 
genetic learning of functional template design, physics- 
based segmentation evaluation, novel crossover oper- 
ator and fitness function, as well as a system proto- 
type and experiments on real synthetic aperture radar 
(SAR) imagery. 

2 Technical Approach 

In an interactive session, the user selects a set of 
examples and a set of counter-examples. The example 
and counter-example sets are then used to scale the 
data and create histograms, which are useful both to 
visualize and quantify the class separation for a variety 
of features. Based on histogram overlap, a set of dis- 
criminating functions is designed to perform discrimi- 
nation between the example class and counter-example 
class. 

A genetic algorithm encodes these functions into 
a functional template representation and produces a 
population of initial functional templates. These func- 
tional templates are applied to the input image to 
produce segmentations. The results of the segmenta- 
tions are quantified by an evaluation process (the fit- 
ness function), and the population of functional tem- 
plates are combined and modified via a set of opera- 
tions based on genetic evolution, in an effort to evolve 
an optimized segmentation. The process of segmenta- 
tion, evaluation, and recombination, is repeated for a 
given number of generations and the best result of the 
final generation is presented as output to the user. 

Although the genetic algorithm evaluates candidate 
segmentations via a comparison to region-based and 
edge-based techniques, these are only used as a guide 
for the process of searching through possible segmen- 
tation outcomes produced by the combinations of the 
discriminating functions and their spatial arrangement. 
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Since the discrimination functions inherently contain 
classification information, it is possible to  outperform 
the region-based and edge-based approaches that are 
used to evaluate the segmentation quality. Novel fea- 
tures of our approach are given below. 

Functional Template Design - Templates are 
commonly used in computer vision and pattern recog- 
nition for image enhancement, image segmentation and 
image recognition. Unlike these traditional templates, 
functional templates, where each element of the tem- 
plate is an index to a function, have also been used 
recently for segmentation and classification [l,2]. How- 
ever, the prior manually designed functional templates 
could take months of effort. Previous work combined 
features in prespecified ways, resulting in a cumber- 
some design process and a single discriminating func- 
tion based on the Bayesian best features, was used in 
every position of the functional template. Unlike the 
previous work, we automate the design of the func- 
tional template. In this research discriminating func- 
tions based on the features are combined into the func- 
tional template using a genetic algorithm. In addition 
to  the selection of a subset of features, the genetic al- 
gorithm determines the spatial placement of functions 
within the template. This means that the combina- 
tions of features are not limited to prespecified combi- 
nations. Furthermore, the approach does not rely on 
the Bayesian best feature. The Bayesian performance 
is calculated solely on example and counter-example 
sets, which may not characterize their respective classes 
entirely. 

The design of the functional template of a given size 
requires a solution of the combinatorics problem. For 
example, for 20 functions, the size of the search space 
for a 3x3 template is 512 billion. We use GAS (genetic 
algorithms) as function optimizers since they allow the 
possibility of achieving the global maximum without 
exhaustive search. 

Physics-Based Segmentation Evaluation - Seg- 
mentation evaluation, during the learning process, is 
performed by a comparison of two segmentation tech- 
niques: edge-base and region-based. These techniques 
incorporate SAR-specific information to produce a seg- 
mentation. The physics-based algorithms are per- 
formed on an image that has been denoised. Denoising 
was performed using wavelets, which has been shown 
to  significantly enhance a SAR image [3]. A region is 
grown from the set of examples, and the edges in the 
image are detected. 

Both of these techniques use a log likelihood ratio 
test. The distributions used in the test are specifically 
developed for SAR imagery. The physics-based results 
of region growing and edge-detection are used within 
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the genetic algorithm for segmentation evaluation. A 
candidate segmentation is evaluated quantitatively by 
comparison to the physics-based I-esults, in a novel fit- 
ness function. 

Improved Crossover Operator and Novel 
Fitness Function- Every genetic algorithm has a 
crossover operator. In this work, the crossover operator 
is an extension of the operator presented in [4]. That 
operator preserves 2D spatial information by exchang- 
ing the information from identical rectangular areas of 
the parent functional templates. The size and position 
of the rectangular area to  be crossed over is chosen ran- 
domly each time the operator is executed. Although 
the prior operator’s templates preserve the 2D spatial 
information, it favors the exchange of center element. 
Such a crossover operator would favor spatial informa- 
tion near the center, over such information near the 
borders of the functional template. 

In this work, the crossover operator is designed to 
remove this bias. This is accomplished by allowing 
the rectangle used in crossover to (conceptually) wrap 
around the template in both the horizontal and verti- 
cal directions. The result is an operator which allows 
unbiased evolution of spatial information. 

The novel fitness function, compares a candidate 
segmentation to portions of the physics-based region 
and edge estimates. The fitness function is the average 
of two terms: a region term and an edge term. The re- 
gion term encourages a segmentation to  correctly clas- 
sify pixels within the region from which the examples 
are selected. The edge term encourages regions classi- 
fied as example regions to have edges coinciding with 
image edges. 

3 Experimental Results 

A prototype of the system has been developed and 
tested on synthetic and SAR imagery. Segmentations 
produced with the system are compared with three de- 
fault single feature templates. The first default tem- 
plate contains the Bayesian best feature. The second 
default template maximizes the percent of the pixels 
classified correctly (PCC). The third default template 
maximizes a normalized version of PCC, which av- 
erages normalized example accuracy and normalized 
counter-example accuracy (NPCC). 

An example experiment for paxed road vs. grass is 
shown in Figures 1-3. The original SAR image (with 
the users examples and counterexamples), results of de- 
noising, region growing, and edge detection, as well as 
ground truth (for evaluation of results only) are shown 
in Figure 1. We are learning a 3x3 template. The ele- 
ments of a template contain the function number. We 



have used 23 functions of intensity, local mean, local 
standard deviation and Gabor wavelet filters of various 
scales and orientations. As shown in Figure 2 the sin- 
gle function corresponding to the best (primitive) fea- 
ture which gave the lowest Bayesian error (pixel clas- 
sification) was #5 (7x7 local mean). The best func- 
tion corresponding to the single feature template was 
based on feature #O (image intensity). EA is the % 
of example accuracy, CA is the % of counter-example 
accuracy. PCC is probability of correct pixel classifica- 
tion. NPCC is normalized probability of correct clas- 
sification, it takes into account the unequal number of 
example and counter-example pixels. 

The fitness function used to evaluate the quality 
of image segmentation is obtained by a comparison 
of physics-based edge detection and region growing to 
compute fitness of an individual (template). A region 
is grown from a set of examples and the edges in the 
image are detected. Both edge detection and region 
growing use a log likelihood ratio test and SAR spe- 
cific distributions. The candidate segmentation of the 
example region is compared with (1) region growing 
results to  obtain the normalized Region Term in the 
example, and (2) it is also compared with the edges 
that have been obtained to get an evaluation based on 
normalized edge-border coincidence (Edge Term). The 
fitness function is one-fourth of these two evaluations. 
GAS have a population of 100, tournament size of lo%, 
cross-over rate of 25%, mutation rate of 1% and they 
were evolved for 10 generations. GA results correspond 
to the result with the highest fitness at the end of 10 
generations. The last column in Table 2 shows the av- 
erage results with 10 different random seeds. Note that 
the GA results are better than the Bayesian or the de- 
fault template based on a single feature. The learned 
template used functions based on features (0, 12, 17, 
18 and 22). 

Region Growing/Edge Detection - The region 
growing and edge detection results are shown in Fig. 
1. Region growing found just over half of the road, as 
the region only grew downward. Edge detection found 
the edges of the road particularly well, as well as some 
texture edges in the grass class. Although a couple 
of the extra texture edges were included in the fitness 
term, the majority were excluded. 

Segmentation Quality - The evolved segmen- 
tation results perform better than default results, as 
shown in Figure 2, for both the region term and the 
edge term. It is not surprising then, that evolved re- 
sults have significantly better example accuracy per- 
formance and have nearly perfect counter-example ac- 
curacy, which is consistent with the defaults. Thus, 
the evolved results are significantly better than default 
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Figure 1. Paved Road vs. Grass: (a) 
Original Image with Examples (yellow/blue) 
and Counter-examples (green/purple) (b) De- 
noised Image with Ground Truth (red) (c) Re- 
gion Growing (Red) and (d) Edge Results. 

segmentations according to the NPCC. (The PCC does 
not show this improvement as dramatically since exam- 
ple pixels represent only 23% of the image.) 

Template Design - The intensity feature was the 
most common in the evolved results in this experiment. 
This is not surprising as it was the selected feature for 
both NPCC and PCC defaults. However, most of the 
example area can be classified correctly with an average 
of four instances of this feature, leaving the remaining 
template positions for other features to improve per- 
formance. Boundary accuracy and edge term improve 
with the remaining functions, typically 90" and 135" 
orientations of the small scale (11x11) Gabor standard 
deviation feature (functions 17 and 22). These features 
make intuitive sense for edge performance in this image 
as they are aligned with the orientation of the road. 

Evolution - The evolution of segmentation qual- 
ity is shown in Figure 3. The region term is optimized 
in the first few generations by the intensity function. 
Later generations fine tune edge performance further 
with the selection of appropriate Gabor standard de- 
viation features. Meanwhile, the region term levels 
off. The fitness function is effectively improving the 



Bayesian Default N P  C C /P C C Default GA Result 

Region Term 
Edge Term 

Fitness 
EA 

Bayes NPCC/PCC GA Result Ave. (10 seeds) 
0.861 0.953 0.970 0.963 
0.099 0.513 0.599 0.554 
0.240 0.367 0.393 0.380 
0.672 0.809 0.846 0.827 

CA 
PCC 

NPCC 1 1  0.836 I 0.904 I 0.923 I 0.914 1 
1.000 1 .000 0.999 0.999 
0.923 0.955 0.963 0.958 

Figure 2. Paved Road vs. Grass Results 

Figure 3. Evolution of Segmentation Quality. 

example accuracy term and counter-example accuracy 
remains quite constant throughout. Thus both PCC 
and NPCC are increasing, although the improvement 
of NPCC is more significant. 

4 Conclusions 

Our research on many real SAR examples, like the 
one illustrated here, shows that the system can effi- 
ciently learn the functional template and that the seg- 

mentation results are superior to a template designed 
using a single best Bayesian feature. 
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